Pflichtaufgaben

Aufgabe 2006 P1:

Im Quadrat ABCD liegt der D Streckenzug AEF.

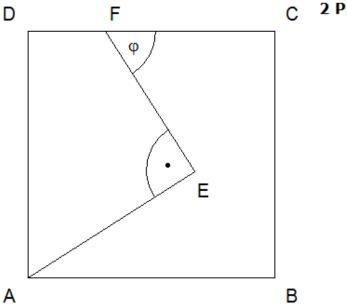
Es gilt:

 $\overline{AE} = 5,6$ cm

 $\overline{\mathsf{EF}} = 4,7\,\mathsf{cm}$

 $\phi = 57,0^{\circ}$

Berechnen Sie die Länge einer Quadratseite.



Strategie 2006 P1:

Gegeben:

 $\overline{AE} = 5,6 \text{ cm}$

 $\overline{\text{EF}} = 4,7\,\text{cm}$

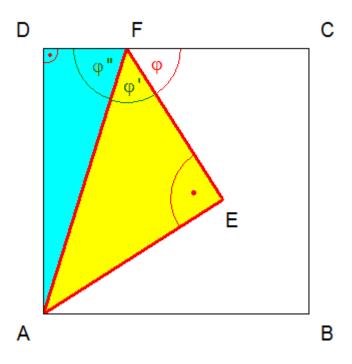
 $\phi = 57,0^{\circ}$

Gesucht:

 $\overline{AB} = a$

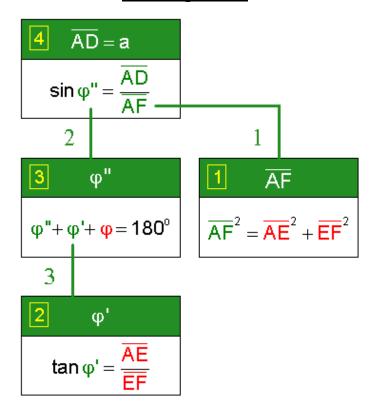
Skizze:

Verbindet man die **Punkte A und F** mit einer **Geraden**, so erhält man ein **rechtwinkliges Dreiecke AEF (gelb)** und ein **rechtwinkliges Dreieck ADF (hellblau)**.



Strategie 2006 P1:

Struktogramm:



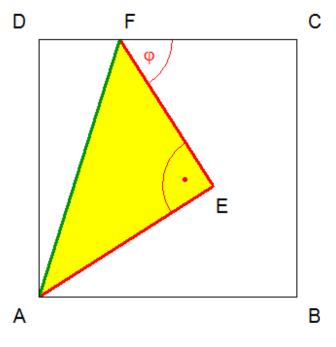
Lösung 2006 P1:

1. Berechnung der Strecke AF:

$$\overline{AF}^2 = \overline{AE}^2 + \overline{EF}^2$$
 Pythagoras im rechtwinkligen gelben Teildreieck

 $\overline{AF}^2 = 5,6^2 + 4,7^2$ Teildreieck

 $\overline{AF}^2 = 31,36 + 22,09$
 $\overline{AF}^2 = 53,45$ $\sqrt{}$
 $\overline{AF} = 7,31cm$



Lösung 2006 P1:

2. Berechnung des Winkels φ':

$$tan \phi' = \frac{Gegenkathete}{Ankathete} = \frac{\overline{AE}}{\overline{EF}}$$

Tangensfunktion im rechtwinkligen gelben

Teildreieck

$$\tan \varphi' = \frac{5,6}{4.7}$$

$$tan \phi' = 1,1915$$

$$\phi'=50^o$$

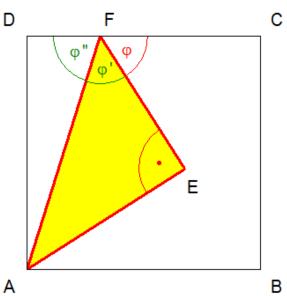
3. Berechnung des Winkels φ":

$$\phi'' + \phi' + \phi = 180^{\circ}$$

$$\phi'' + 50^{\circ} + 57^{\circ} = 180^{\circ}$$

$$\phi'' + 107^{\circ} = 180^{\circ}$$
 -107°

$$\underline{\phi^{\, \prime \prime} = 73^o}$$



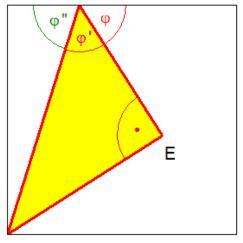
С

В

F

D

Α



4. Berechnung der Seite $\overline{AD} = a$:

$$sin\phi'' = \frac{Gegenkathete}{Hypotenuse} = \frac{\overline{AD}}{\overline{AF}} \begin{tabular}{l} Sinusfunktion in rechtwinkligen hellblauen Teildreieck \\ \hline \end{tabular}$$

$$\sin 73^{\circ} = \frac{\overline{AD}}{7,31}$$

$$0,9563 = \frac{\overline{AD}}{7,31}$$

$$\frac{\overline{AD}}{7,31} = 0,9563$$

$$\overline{AD} = 7 \, cm$$

$$a = 7 \, cm$$

Seiten tauschen

