Pflichtaufgaben

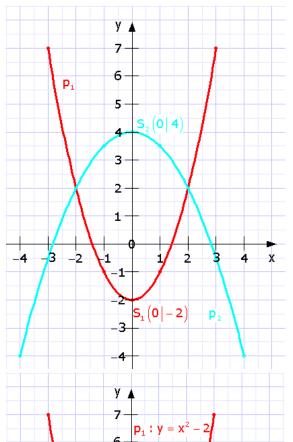
Aufgabe 2002 P4:

2,5 P

Gegeben sind eine nach oben geöffnete Normalparabel mit dem Scheitelpunkt $S\left(0\left|-2\right)\right)$ und eine Parabel mit der Gleichung $y=-\frac{1}{2}x^2+4$.

Zeichnen Sie die beiden Parabeln in ein gemeinsames Koordinatensystem und berechnen Sie die Koordinaten ihrer Schnittpunkte.

Lösung 2002 P4:


1. Zeichnung der Parabeln p₁ und p₂ in das Koordinatensystem:

Die Parabel p_1 läßt sich durch Anlegen der Schablone an den Scheitelpunkt $S\!\left(0\,\big|-2\right)$ zeichnen.

Die Parabel \mathbf{p}_2 kann man durch Zeichnen der Punkte aus der Wertetabelle erhalten

Wertetabelle für Parabel p_2 : $y = -\frac{1}{2}x^2 + 4$

Х	- 4	- 3,5	- 3	- 2,5	- 2	- 1,5	- 1	- 0,5	0
у	- 4	- 2,125	- 0,5	0,875	2	2,875	3,5	3,875	4
							3,5		
у	3,875	3,5	2,875	2	0,875	- 0,5	- 2,125	- 4	

 $S_{2}(0|4)$

 $S_1(0|-2)$

3

2. Berechnung der Funktionsgleichung der Parabel P1:

$$y = (x - b)^2 + d$$
; $S(b|d)$ Scheitelgleichung
 $y_1 = (x - 0)^2 + (-2)$; $S(0|-2)$ Scheitelkoordinaten
 $y_1 = x^2 - 2$

Lösung 2002 P4:

3. Berechnung der Koordinaten der beiden Schnittpunkte SP₁ und SP₂:

$$I: y_1 = x^2 - 2$$

II:
$$y_2 = -\frac{1}{2}x^2 + 4$$

$$y_1 = y_2$$

Gleichsetzverfahren

$$x^2 - 2 = -\frac{1}{2}x^2 + 4$$
 $+\frac{1}{2}x^2$

$$+\frac{1}{2}x^2$$

$$1,5x^2-2=4$$

$$1,5x^2 = 6$$

$$x^2 = 4$$

$$|\sqrt{}$$

$$x_1 = 2$$

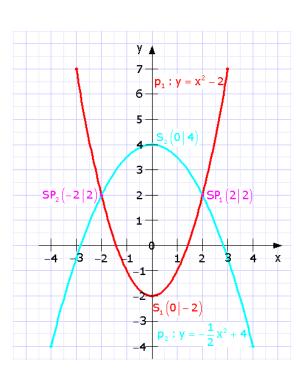
$$\underline{x_2 = -2}$$

$$y_1 = 2^2 - 2$$

$$x_1 = 2$$
 in I einsetzen

$$y_1 = 4 - 2$$

$$\underline{y_1=2} \quad \Rightarrow \quad \underline{SP_1\!\left(2\,\middle|\,2\right)}$$


$$y_2 = -\frac{1}{2}(-2)^2 + 4$$
 $x_2 = -2$ in II einsetzen

$$x_2 = -2$$
 in II einsetzer

$$y_2^{}=-\frac{1}{2}\cdot 4+4$$

$$y_2 = -2 + 4$$

$$\underline{y_2 = 2} \quad \Rightarrow \quad \underline{SP_2(-2|2)}$$

