Aufgabe 1981 3d:

3 P

Ein Rechteck ABCD ist festgelegt durch $\overline{AB}=a=8\,cm$ und $\measuredangle CAB=\epsilon$. Das Rechteck rotiert um die zu \overline{BC} parallele Symmetrieachse. Berechnen Sie das Volumen des entstehenden Rotationskörpers als Vielfaches von π in Abhängig – keit von ϵ .

Für welchen Wert von ϵ beträgt das Rotationskörpervolumen $V=640\pi\,cm^3$?

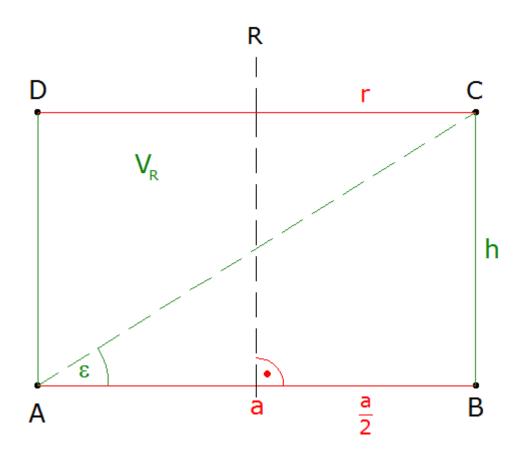
3

Strategie 1981 3d:

Gegeben:

Rechteck

Rotationskörper


Gesucht:

V_R

 $\overline{AB} = a = 8 \text{ cm}$

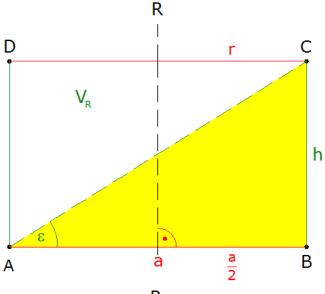
 $\angle CAB = \epsilon$

Skizze:

Lösung 1981 3d:

1. Berechnung der Körperhöhe h:

$$tan \epsilon = \frac{Gegenkathete}{Ankathete} = \frac{h}{a} \frac{Tangensfunktion \ im}{rechtwinkligen \ gelben} \quad D$$


$$tan\epsilon = \frac{h}{8}$$

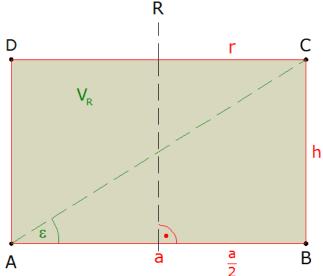
Seiten tauschen

$$\frac{h}{8}=tan\epsilon$$

|.8

$$h=8\cdot tan\epsilon$$

2. Berechnung des Körpervolumens V_R:


$$V_R = \mathbf{r}^2 \cdot \pi \cdot \mathbf{h}$$

Formel Zylindervolumen

$$V_R^{} \, = \, 4^2 \cdot \pi \cdot 8 \cdot tan \, \epsilon$$

$$V_R = 16 \cdot \pi \cdot 8 \cdot tan \, \epsilon$$

$$\underline{V_{R}} = 128\pi \cdot tan \epsilon$$

3. Berechnung von ε für $V_R = 640\pi$ cm³:

$$128\pi \cdot tan \epsilon = 640\pi \mid : \pi$$

128
$$\tan \epsilon = 640$$
 |:128

$$tan \epsilon = 5$$

$$\underline{\epsilon=78,7^o}$$