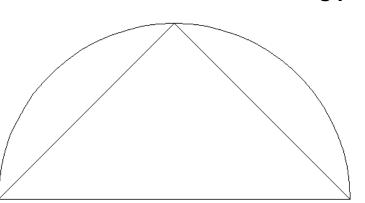
Aufgabe 1981 2c:

Nebenstehende Abbildung stellt einen Diagonalschnitt durch eine quadratische Pyramide, der eine Halbkugel umbeschrieben ist, dar. Das Volumen dieser Halbkugel beträgt $V_H=18\pi\,e^3\,VE$.

Berechnen Sie den Radius r der Halbkugel und die Grundkante a der Pyramide in Abhängigkeit von e. Für welchen Wert von e hat die Pyramide ein Volumen von $V_{D} = 144 VE$?



Strategie 1981 2c:

Gegeben:

Gesucht:

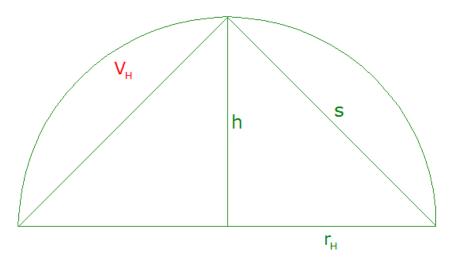
Quadratische Pyramide Halbkugel

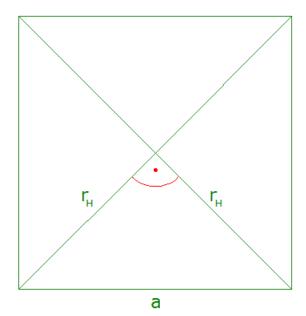
 $V_H=18\pi\,e^3\,VE$

 r_{H} а

e

Skizze:





3 P

Lösung 1981 2c:

1. Berechnung des Halbkugelradius r_H:

$$V_H = \frac{2}{3} \pi r_H^3$$
 Formel Volumen Halbkugel

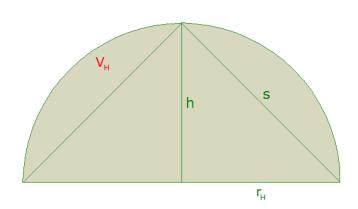
$$V_{H} = 18\pi e^{3}$$

$$\frac{2}{3}\pi r_{H}^{3} = 18\pi e^{3} |: \pi$$

$$\frac{2}{3}r_H^3 = 18e^3 \qquad \left| \cdot \frac{3}{2} \right|$$

$$r_{H}^{3} = 27e^{3}$$
 3

$$r_{\!\scriptscriptstyle H}=3eLE$$



2. Berechnung der Pyramidengrundkante a:

$$r_{H}^{2} + r_{H}^{2} = a^{2}$$

Pythagoras im rechtwinkligen gelben Teildreieck

$$(3e)^2 + (3e)^2 = a^2$$

$$9e^2 + 9e^2 = a^2$$

$$18e^2 = a^2$$

18e² = a² Seiten tauschen

$$a^2 = 18e^2$$

$$a = \sqrt{18e^2}$$

$$a = \sqrt{2 \cdot 9 \cdot e^2}$$

$$a = \sqrt{2} \cdot \sqrt{9} \cdot \sqrt{e^2}$$

$$a = \sqrt{2} \cdot 3 \cdot e$$

$$a = 3e\sqrt{2}LE$$

3. Berechnung von e für $V_p = 144 \text{ VE}$:

$${\color{red}V_p} = \frac{1}{3} \cdot {\color{red}a^2} \cdot h$$

Formel Volumen quadratische

$$144 = \frac{1}{3} \cdot a^2 \cdot 3e$$
 $h = r_H = 3e$

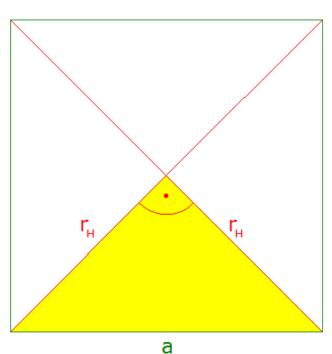
$$h = r_H = 3e$$

$$144 = \frac{1}{3} \cdot (3e\sqrt{2})^2 \cdot 3e \ a = 3e\sqrt{2}$$

$$144 = \left(3e\sqrt{2}\right)^2 \cdot e$$

$$144 = 9 \cdot e^2 \cdot 2 \cdot e$$

$$144 = 18 \cdot e^3$$



Lösung 1981 2c:

$$18 \cdot e^3 = 144$$
 |:18

$$e^{3} = 8$$