Aufgabe 1978 6b:

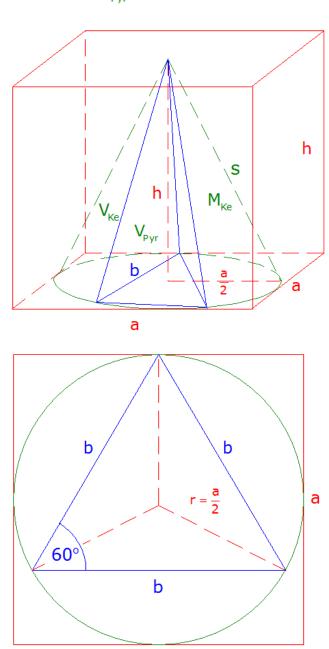
4 P

Einem quadratischen Prisma mit $a=5\,cm$ und $h=16\,cm$ wird der größtmögliche Kegel, diesem Kegel die größtmögliche Pyramide mit einem gleichseitigen Dreieck als Grundfläche einbeschrieben. Berechnen Sie das Volumen und die Mantelfläche des Kegels, außerdem das Volumen der Pyramide.

Strategie 1978 6b:

Gegeben:	Gesucht:
Quadratisches Prisma	$V_{\!\scriptscriptstyleKe}$
a = 5 cm	M_{Ke}
h = 16 cm	V _{Pvr}

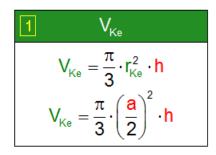
Skizze:



а

Strategie 1978 6b:

Struktogramm:



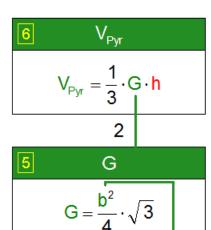
$$M_{Ke} = \pi \cdot r_{Ke} \cdot s$$

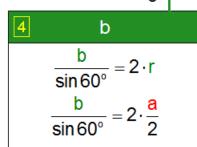
$$M_{Ke} = \pi \cdot \frac{a}{2} \cdot s$$

$$1$$

$$s$$

$$s^{2} = h^{2} + \left(\frac{a}{2}\right)^{2}$$





Lösung 1978 6b:

1. Berechnung des Kegelvolumens V_{Ke} :

$$V_{Ke} = \frac{\pi}{3} \cdot r_{Ke}^2 \cdot h$$

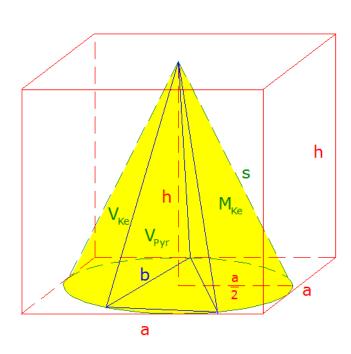
$$V_{\text{Ke}} = \frac{\pi}{3} \cdot \left(\frac{\text{a}}{2}\right)^2 \cdot \text{h}$$

$$V_{Ke} = \frac{\pi}{3} \cdot \left(\frac{5}{2}\right)^2 \cdot 16$$

$$V_{Ke} = \frac{\pi}{3} \cdot 2,5^2 \cdot 16$$

$$V_{Ke} = \frac{\pi}{3} \cdot 6,25 \cdot 16$$

$$\underline{V_{Ke}=104,7\,cm^3}$$



Lösung 1978 6b:

2. Berechnung der Kegelmantellinie s:

$$s^2 = \frac{h^2}{2} + \left(\frac{a}{2}\right)^2$$

Pythagoras im $s^2 = h^2 + \left(\frac{a}{2}\right)^2 \qquad \begin{array}{c} \text{Pythagords in.} \\ \text{rechtwinkligen} \\ \text{hellblauen} \\ \text{Teildreieck} \end{array}$

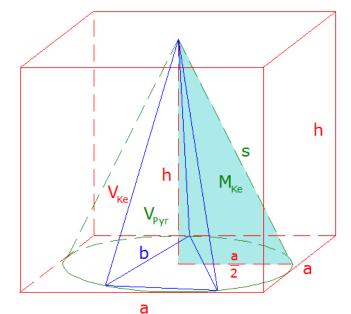
$$s^2 = 16^2 + \left(\frac{5}{2}\right)^2$$

$$s^2 = 16^2 + 2,5^2$$

$$s^2 = 256 + 6,25$$

$$s^2 = 262,25$$
 $\sqrt{ }$

$$s = 16, 2 cm$$



3. Berechnung des Kegelmantels M_{Ke}:

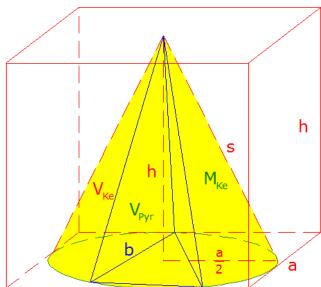
$$\boldsymbol{M}_{Ke} = \boldsymbol{\pi} \cdot \boldsymbol{r}_{Ke} \cdot \boldsymbol{s}$$

$$M_{Ke} = \pi \cdot \frac{a}{2} \cdot s$$

$$M_{\text{Ke}} = \pi \cdot \frac{5}{2} \cdot \textbf{16,2}$$

$$M_{Ke} = \pi \cdot 2, 5 \cdot 16, 2$$

$$\underline{M_{Ke}} = 127, 2\,cm^2$$



4. Berechnung der Pyramidengrundkante b:

$$\frac{b}{\sin 60^{\circ}} = 2r$$

Sinussatz im gleichseitigen grünen Dreieck

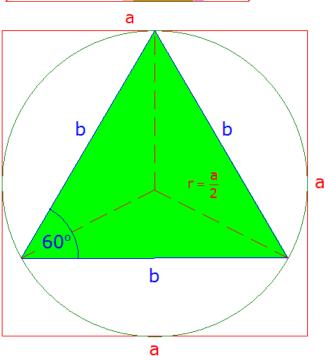
$$\frac{b}{\sin 60^{\circ}} = 2\frac{a}{2}$$

$$\frac{b}{\frac{1}{2}\cdot\sqrt{3}}=2\frac{5}{2}$$

$$\frac{b}{\frac{1}{2} \cdot \sqrt{3}} = 5 \qquad \left| \cdot \frac{1}{2} \sqrt{3} \right|$$

$$b = \frac{5}{2} \cdot \sqrt{3}$$

$$b=2,5\cdot\sqrt{3}$$



Lösung 1978 6b:

5. Berechnung der Pyramidengrundfläche G:

$$G=\frac{b^2}{4}\cdot\sqrt{3}$$

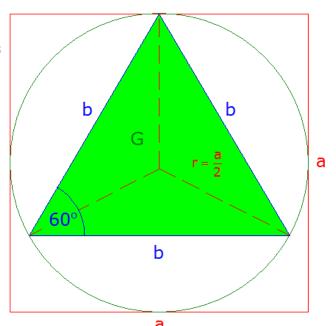
Formel Fläche gleichseitiges Dreieck

$$G = \frac{\left(2, 5 \cdot \sqrt{3}\right)^2}{4} \cdot \sqrt{3}$$

$$G=\frac{6,25\cdot 3}{4}\cdot \sqrt{3}$$

$$G=4,6875\cdot\sqrt{3}$$

$$G = 8,119 \, cm^2$$



<u>6. Berechnung des Pyramidenvolumens</u> V_{pyr} :

$$V_{pyr} = \frac{1}{3} \cdot \mathbf{G} \cdot \mathbf{h}$$

$$V_{pyr} = \frac{1}{3} \cdot 8,119 \cdot 16$$

$$V_{Pyr}=43,30\,cm^3$$

