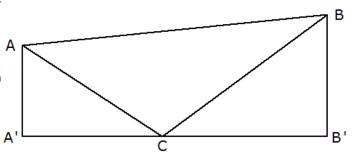
Aufgabe 1974 6d:

2 P

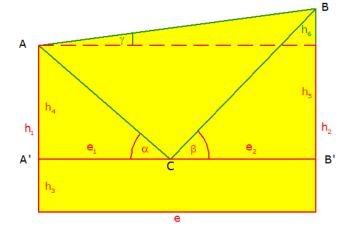

В

Auf einer Karte im Maßstab 1: 25.000 ist eine Bergspitze A eingezeichnet, die $h_1 = 720\,m$ über NN liegt. Die Entfernung zu einer anderen Bergspitze B beträgt nach der Karte $A'B' = 4,8\,cm$ (siehe nebenstehende Abbildung).

Um die Höhe des Berges B zu bestimmen, misst man von einem Punkt C, der auf der waagrechten Strecke $\overline{A'B'}$ liegt und $h_3=230\,m$ über NN liegt, die Winkel

ACA' =
$$\alpha$$
 = 42,6° und BCB' = β = 46,4°.

Unter welchem Höhenwinkel γ sieht man B von A aus und wie groß ist der Abstand a zwischen A und B.

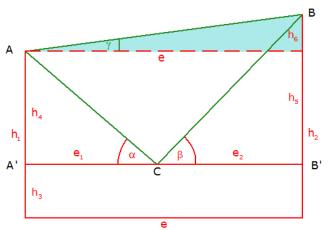

Lösung 1974 6d:

1. Berechnung der Höhe h₆:

$$\mathbf{h}_6 = \mathbf{h}_2 - \mathbf{h}_1$$

$$h_6 = 930, 5 - 720$$

$$h_6 = 210,5m$$


2. Berechnung des Winkels γ:

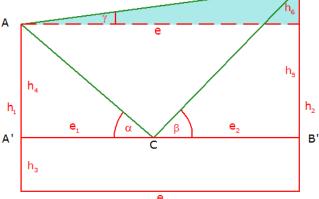
$$tan \gamma = \frac{Gegenkathete}{Ankathete} = \frac{h_6}{e} \frac{Tangensfunktion im}{rechtwinkligen}$$

$$\tan\gamma = \frac{210,5}{1200}$$

$$tan \gamma = 0,1754$$

$$\gamma = 9,95^{\circ}$$

3. Berechnung des Abstands $\overline{AB} = a_1$


$$a^2 = h_6^2 + e^2$$

$$a^2 = 210,5^2 + 1200^2$$

$$a^2 = 44310, 25 + 1440000$$

$$a^2 = 1484310,3$$

Pythagoras im A rechtwinkligen hellblauen Teildreieck

