
Aufgabe 1973 6a:

4 P

Lösung 1973 6a:

1. Zeichnung des Achsenschnittes im Maßstab 1:50:

Lösung 1973 6a:

2. Berechnung des Radius r₂:

$$r_2^2 + h_1^2 = r_1^2$$
 Pythagoras im rechtwinkligen gelben Teildreieck

$$r_2^2 + 81 = 225 \mid -81$$

$$r_2^2 = 144$$

$$r_2 = 12 \, dm$$

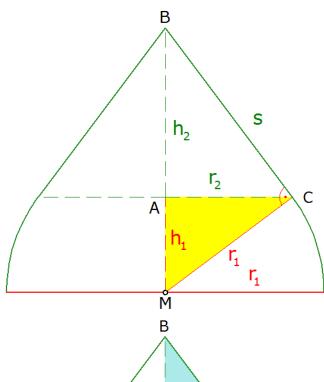
3. Berechnung der Kegelhöhe h₂:

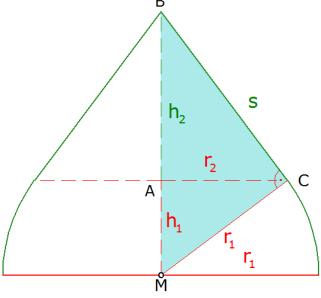
$$h^2 = p \cdot q$$
 Höhensatz im
rechtwinkligen
 $r_2^2 = h_1 \cdot h_2$ Höhensatz im
rechtwinkligen
hellblauen Teildreieck

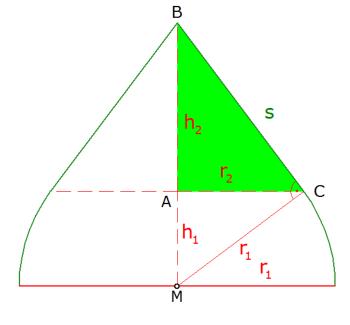
$$12^2 = 9 \cdot h_2$$

$$9 \cdot h_2 = 144 : 9$$

$$h_2 = 16 dm$$


4. Berechnung der Kegelmantellinie S:


$$s^2 = h_2^2 + r_2^2$$
 Pythagoras im rechtwinkligen $s^2 = 16^2 + 12^2$ grünen Teildreieck


$$s^2 = 256 + 144$$

$$s^2 = 400$$

$$s = 20 \, dm$$

Lösung 1973 6a:

<u>5. Berechnung des Verhältnisses</u> $r_1 : r_2$:

$$r_1: r_2 = 15:12$$

$$\frac{r_1}{r_2} = \frac{15}{12}$$

$$\frac{r_1}{r_2} = \frac{5 \cdot 3}{4 \cdot 3}$$
 Bruch kürzen

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{5}{4}$$

$$r_1 : r_2 = 5 : 4$$

<u>6. Berechnung des Verhältnisses</u> $s:(h_1+h_2)$:

$$s:(h_1+h_2)=20:(9+16)$$

$$s:(h_1+h_2)=20:25$$

$$\frac{s}{h_1+h_2}=\frac{20}{25}$$

$$\frac{s}{h_1+h_2}=\frac{4\cdot 5}{5\cdot 5}$$

Bruch kürzen

$$s:(h_1+h_2)=4:5$$