Aufgabe 1970 4c:

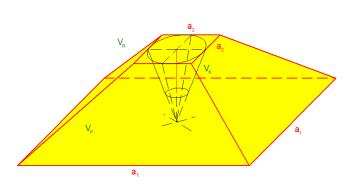
3 P

Ein behauener Stein hat die Form eines sich nach oben verjüngenden quadratischen Pyramidenstumpfes mit der Deckkante $\mathbf{a}_2 = 2\,\mathrm{d}m$, der Seitenflächenhöhe $\mathbf{h}_s = 4\,\mathrm{d}m$ und der Seitenkante $\mathbf{s}_K = 5\,\mathrm{d}m$. Aus diesem Stein ist ein kegelstumpfförmiges Becken mit $\mathbf{d}_2 = \mathbf{a}_2$ und $\mathbf{h}_K = 1,5\,\mathrm{d}m$ so herausgearbeitet worden, daß die Spitze des Ergän zungskegels im Mittelpunkt der Pyramidenstumpfgrundfläche liegen würde. Berechne das Volumen des Restkörpers!

Lösung 1970 4c:

1. Berechnung des Pyramidenstumpfvolumens V_p:

$$\begin{split} V_{p} &= \frac{1}{3} \cdot h_{p} \left(a_{1}^{2} + a_{1} \cdot a_{2} + a_{2}^{2} \right) \\ V_{p} &= \frac{1}{3} \cdot 2,646 \left(8^{2} + 8 \cdot 2 + 2^{2} \right) \\ V_{p} &= \frac{1}{3} \cdot 2,646 \left(64 + 16 + 4 \right) \\ V_{p} &= \frac{1}{3} \cdot 2,646 \cdot 84 \\ V_{p} &= 74,09 \, dm^{3} \end{split}$$



2. Berechnung des Kegelstumpfvolumens V_K :

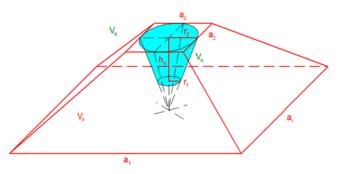
$$V_{K} = \frac{1}{3} \cdot \pi \cdot h_{K} \left(r_{1}^{2} + r_{1} \cdot r_{2} + r_{2}^{2} \right)$$

$$V_{K} = \frac{1}{3} \cdot \pi \cdot 1, 5 \left(0, 433^{2} + 0, 433 \cdot 1 + 1^{2} \right)$$

$$V_K = \pi \cdot 0.5(0.1875 + 0.433 + 1)$$

 $V_K = \pi \cdot 0.5 \cdot 1.6205$

$$V_{K} = 2,545 \, dm^{3}$$



3. Berechnung des Restkörpervolumens V_R :

$$V_{R} = V_{P} - V_{K}$$

 $V_{R} = 74,09 - 2,545$

